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SUFFICIENT DISCRETE–INTEGRAL CRITERION OF RUPTURE STRENGTH

UDC 539.375V. M. Kornev and V. D. Kurguzov

The behavior of the atomic structure in the vicinity of the crack tip is modeled. The loss
of stability and postcritical deformation of a triatomic cell in a close-packed atomic layer in
tension are studied. For macrocracks in single crystals, the concept of the generalized Burgers
vector is introduced. A sufficient discrete–integral strength criterion is proposed for normal-
rupture cracks in the case where the stress fields have a singular component. In accordance with
Novozhilov’s hybrid model, this criterion is formulated with the use of a new class of solutions
that differs from solutions used in formulating the classical sufficient strength criterion. In
the limiting case where the energy characteristics of the postcritical deformation of the cell
can be ignored, the sufficient criterion proposed admits a limiting passage to the necessary
criterion. The critical loads calculated by means of the sufficient criterion differ substantially
from those determined with the use of the necessary criterion; this makes it possible to describe
the Rehbinder effect.

Introduction. In strength and fracture analyses for solids, an increasing attention has been attached
to approaches based on the discrete structure of the material. Novozhilov [1] considered the fracture of an ideal
crystalline solid with a crack as a discrete process and suggested to estimate the strength of a brittle elastic
body in the neighborhood of singular points of the stress field by averaging the stresses within the interatomic
distance and comparing these with the theoretical rupture strength. Moreover, he introduced necessary and
sufficient criteria of brittle strength [1]. Real crystals contain defects among which vacancies occur most
frequently. Kornev [2] proposed discrete–integral criteria for three simplest types of crack (necessary criteria
according to Novozhilov’s terminology). A similar approach was developed also for the complex stress–strain
state under proportional loading [3] with the averaging limits for stresses being dependent on the presence,
sizes, and location of defects in the neighborhood of the crack tip. Kornev et al. [4, 5] used Novozhilov’s
approach to obtain sufficient criteria for normal-rupture cracks. It was shown that if the crack opening is
determined with the use of real potentials of interatomic interaction for an atomic chain, the theoretical
strength of a crystalline solid does not depend on a concrete crystal structure in the vicinity of the crack tip.

For the necessary criteria, the corresponding averaged stresses do not exceed the theoretical rupture
or shear strengths. If the necessary criterion is satisfied, the crystal structure that is the nearest to the crack
tip is in a critical state. Nevertheless, after the carrying capacity of the crystal structure nearest to the
tip is exhausted, additional loading of the cracked body is still possible owing to postcritical deformation of
this structure and subcritical deformation of the next crystal structure provided there are no vacancies and
impurity atoms in the neighborhood of the crack tip. Satisfaction of the sufficient criterion corresponds to
catastrophic fracture of the system.

Let us consider the classical sufficient criteria [6–9] in greater detail. Within the framework of the linear
continual model, the stresses on the continuation of a sharp crack for y = 0 can be written with accuracy to
higher-order terms in the form
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Fig. 1

σy(x, 0) ' σ∞ +
K0

I
(2πx)1/2

, (1)

where K0
I is the stress-intensity factor (SIF) and σ∞ is the characteristic stress specified at infinity or on the

contour of a bounded body. It is of interest to consider two cases:

K0
I = 0; (2)

K0
I > 0. (3)

In fact, the constraint (2) is used in the classical criteria [6, 7]. Within the framework the Leonov–Panasyuk–
Dugdale model, the crack forms a peculiar “nose,” and the model-crack profile has an inflection point at
which the tangent to the crack sides is vertical. The constraint (2) is meaningful only in the case of developed
plasticity [9]. It should be noted that if the constraint (2) is satisfied, any crystal structure become unstable
when the geometry of the crack sides in the neighborhood of inflection points changes. Chernykh [10] considered
in detail Novozhilov’s concept for the case where the constraint (2) is satisfied.

Below, we study the constraint (3). The authors consider that in this case, it is convenient to use
Novozhilov’s approach [10].

1. Mechanical Models and a Sufficient Criterion for Normal-Rupture Cracks. We study the
behavior of a loaded body with an internal macrocrack. Let the plane macrocrack with a rectilinear front do
not disrupt the monocrystal structure in the macrovolume [11]. A close-packed atomic layer that contains a
macrocrack and vacancies is considered (Fig. 1). It is assumed that the macrocrack is formed in such a manner
that some atoms are removed from the chain and there are vacancies in front of the tip, which are indicated
by crosses in Fig. 1. Figure 2 shows the loading scheme for a triatomic cell and the typical deformation curve
for the triatomic cell in tension: σm = maxσ(v) for normal stresses; F is the force vector, f = |F |, and
fm = max f (given the forces, one can determine the stresses by averaging with the use of the hybrid model
in fracture mechanics), v is the displacement along the Oy axis, vm is the displacement corresponding to fm,
and vc is the radius of the interatomic-interaction region for the triatomic cell which is calculated from energy
considerations by the rule

∞∫
vm

f(v) dv = (vc − vm)fm (4)

if the deformation curve of the triatomic cell in tension f = f(v) is known (in Fig. 2, the shaded region under
the curve is equal to the area of the shaded rectangle). When the real physical potentials of interatomic
interaction are used, the improper integral of the first kind in (4) converges, since the function f(v) decreases
rapidly as v →∞.

We model the crack by a bilateral cut. Figure 3 shows the model of a normal-rupture crack (∆ is the
loaded segment of the cut) and the scheme of crack opening. For the coordinate x = −∆, the crack opening
is equal to V . The possible instabilities of the atomic structures in the neighborhood of the point x = −∆ are
beyond the present work.
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Fig. 2

Fig. 3

We consider the weakest atomic layer located normally to the rectilinear front of a plane sharp macroc-
rack of length 2l. We propose a sufficient discrete–integral criterion of quasibrittle strength for normal-rupture
cracks:

1
kre

nre∫
0

σy(x, 0) dx 6 σm, x > 0; V =
æ + 1
G

K0
I

√
∆
2π
6 V ∗, x 6 0. (5)

Here σy(x, 0) are the normal stresses at the crack tip in the continual model, which have an integrable
singularity, Oxy is the rectangular coordinate system with the origin at the right tip of the crack, re is the
interatomic distance, n and k are the numbers such that n > k (k is the number of interatomic bonds), nre is
the averaging interval, σm is the theoretical rupture strength of solids [12], V are the twice displacements of the
crack sides, V ∗ = vc−vm is the critical opening of the normal-rupture crack, æ = 3−4ν and æ = (3−ν)/(1+ν)
for the plane strain and the plane stress, respectively, ν is Poisson’s ratio, and G is the shear modulus. After
averaging with allowance for damage of the material, the stresses σy in the continual model are compared
with the theoretical strength of ideal crystals σm in the discrete model. To determine the length of the loaded
segment of the cut ∆ that enters the sufficient criterion (5), one can use either the concrete crystal structure
of the material in the vicinity of the crack tip or the real physical potentials of interatomic interaction. The
crack sides interact only on the loaded segment of the cut.

It is obvious that V → 0 as ∆→ 0 and the sufficient criterion (5) becomes a necessary criterion [2, 3].
The averaging limits for stresses in the necessary and sufficient criteria depend on the presence, sizes, and
location of defects in the crystal lattice near the crack tip. For the close-packed atomic layer shown in Fig. 1,
we have n = 2 and k = 1. The magnitude of these averaged stresses must be smaller than the theoretical
strength σm. The ratio k/n characterizes the degree of damage of the continuous material in front of the crack
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tip. Before considering a similar parameter in the interval [−∆; 0] for a material before rupture, one should
verify whether the constraint ∆/re > 2 is satisfied.

Let there be a sharp crack of length 2l0nk such that ∆ = 0. Under successive additional loading, the
crack does not increase provided σ∞ < σ0

∞ (σ0
∞ are the critical stresses for sharp cracks obtained by means of

the necessary criteria [2, 3] for a crack length equal to 2l0nk). When the load exceeds the critical stresses for
the necessary criterion (σ∞ > σ0

∞), the crack begins to increase and the triatomic cells that are the nearest
to the crack tip begin to “work” in the postcritical regime; at the same time, the force constraints form in the
neighborhood of the crack tip, and the reference point in the model shown in Fig. 3 is shifted. Owing to force
constraints, the growth of the crack is stable 2l0nk < 2lnk < 2l∗0nk up to a certain loading level σ∗0∞ (σ∗0∞ are the
critical stresses determined by means of the sufficient criterion for sharp cracks of length l∗0nk). Under gradual
loading such that σ0

∞ < σ∞ < σ∗0∞ , the crack opening V increases (V < V ∗) and the growth of the crack
is stable: the loads increase with the length of the crack: ∆ < ∆∗ (∆∗ is the critical length of the loaded
segment of the cut). When the length of the loaded segment of the cut ∆ reaches the critical value ∆∗, i.e.,
V = V ∗, the growth of the crack becomes unstable. As a result, a peculiar trap forms for cracks propagating
in quasibrittle materials.

We obtain relations between the critical parameters K∗0I and ∆∗ for sharp cracks. After appropriate
transformations, we have

K∗0I
σ∗0∞
√
re

=
√
π

2
n
( σm
σ∗0∞

k

n
− 1
)
, ∆∗ = 2π

( G

æ + 1
V ∗

K∗0I

)2
. (6)

The first relation in (6) coincides with the critical SIF that enters the necessary criterion of brittle strength [2]
with accuracy to notation.

In accordance with the model proposed, the SIF K0
I of the sufficient criterion is written in the form

K0
I = K0

I∞ +K0
I∆, (7)

where K0
I∞ is the SIF generated by the stresses σ∞ and K0

I∆ is the SIF generated by the stresses σm
which act in the vicinity of the crack tip. We recall that, in accordance with the model of a normal-rupture
crack (Fig. 3), the SIF K0

I∞ is expressed in terms of the stresses σ∞ at infinity and the half-length of the
internal crack lnk, whereas the SIF K0

I∆ is expressed in terms of the stresses σm, the half-length of the
crack lnk, and the length of the loaded segment of the cut ∆ as follows: K0

I∞ = σ∞
√
πlnk and K0

I∆ =
−σm

√
πlnk(1 − (2/π) arcsin (1 −∆/lnk)). The stresses σ∞ determine the smooth part of the solution in the

vicinity of the crack tip [see (1)], whereas the stresses σm specified on the opposite sides of the cut (crack)
are self-balanced stresses and do not determine it. Taking into account the direction of action of the tensile
stresses at infinity σ∞ and the compressive stresses σm specified in the interval [−∆; 0], in accordance with
the sufficient criterion, we finally obtain K0

I for the internal normal-rupture cracks [see (7)]:

K0
I = σ∞

√
πlnk − σm

√
πlnk[1− (2/π) arcsin (1−∆/lnk)] > 0. (8)

In formula (8), we have 0 6 ∆ 6 ∆∗ and 2l0nk 6 2lnk 6 2l∗0nk. Obviously, for ∆ = 0, the SIF determined
by means of the sufficient criterion is equal to the SIF determined by means of the necessary criterion, since
K0

I∆ = 0 in this case.
We now estimate the quantity ∆. Relation (8) can be simplified significantly if the length of the loaded

segment [−∆; 0] is much smaller than the half-length of the crack, i.e., ∆/lnk � 1. In this case, we obtain
arcsin(1−∆/lnk) ' π/2−

√
2∆/lnk. Using the sufficient criterion (5), after certain manipulations we obtain

the quadratic equations for the dimensionless parameter
√

∆/lnk(√
∆∗

l∗0nk

)2

− π

2
√

2
σ∗0∞
σm

√
∆∗

l∗0nk
+

π

2(æ + 1)
V ∗

l∗0nk

G

σm
= 0.

Neglecting the quantity ∆∗/l∗0nk compared to unity, we obtain a simpler expression for the smaller root of the
quadratic equation √

∆∗

l∗0nk
'
√

2
æ + 1

V ∗

l∗0nk

G

σ∗0∞
. (9)
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Fig. 4

Remark 1. If the constraint ∆∗/l∗0nk � 1 is not satisfied, the sufficient criterion (5) or relation (7)
yields a transcendental equation for ∆∗/l∗0nk. No serious difficulties arise in solving this equation if its positive
roots are smaller than unity.

Substituting (9) into (8), we obtain the critical SIF K∗0I for a sharp internal normal-rupture crack for
∆∗/l∗0nk � 1:

K∗0I

σ∗0∞
√
πl∗0nk

= 1− σm
σ∗0∞

2
√

2
π

√
∆∗

l∗0nk
. (10)

Thus, for a given load, the rupture curve obtained by means of the sufficient criterion and the critical length
of a sharp internal normal-rupture crack are given by

σ∗0∞
σm

=

(
n

k
+
√
n

k

√
2l∗0nk
re

)−1(
1 +

4
√
n

πk

√
∆∗

re

)
; (11)

2l∗0nk
re

=

[
σm
σ∗0∞

(
1 +

4
√
n

πk

√
∆∗

re

)
− n

k

]
k2

n
. (12)

The equations of rupture curves obtained by means of the sufficient criterion (11) differ from those
obtained by means of the necessary criterion [2, 3] by the last factor which depends on the length of the loaded
segment of the cut. Relations (10)–(12) admit a limiting passage if the SIF, the length of the loaded segment
of the cut, and the length of the crack tend to zero.

We compare the critical loads obtained with the use of the necessary and sufficient criteria for brittle
materials for the same lengths of the cracks:

σ∗0∞
σ0
∞

= 1 +
4
√
n

πk

√
∆∗

re
. (13)

These critical loads differ appreciably. The discrepancy in the critical loads can be attributed to the Rehbinder
effect [13–15].

Figure 4 shows schematically the stable and unstable parts of the crack growth (curves 1 and 2,
respectively) and the rupture curve obtained by means of the necessary criteria [2, 3] (curve 3). On the stable
part, the formed system sustain an increased load, since σ∗0∞ > σ0

∞; as a result, the crack extends, since
l0nk < l∗0nk.

2. Estimated Strength of a Triatomic Cell. The behavior of the atomic structure in the vicinity
of the crack tip is modeled. The instability of a triatomic cell in a close-packed atomic layer in tension is
studied. We consider deformation of the triatomic cell shown in Fig. 2. The external action is characterized
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Fig. 5

TABLE 1

α vm/re V ∗/re α vm/re V ∗/re

2 0.400 0.791 7 0.115 0.239

3 0.269 0.537 8 0.101 0.209

4 0.202 0.408 9 0.090 0.187

5 0.162 0.329 10 0.081 0.168

6 0.135 0.276

by the force F applied to the third atom of the cell. The action of the interatomic forces is assumed to be
central with the Morse potential of interaction [12]

U(r) = D[e−2α(r−re) − 2 e−α(r−re)],

where r is the interatomic distance, re is the interatomic distance in the state of equilibrium, and D and α are
constants. For r = re (state of equilibrium), the central force of interatomic interaction vanishes; the repulsive
(negative) force acts between the atoms for r < re, and attraction (positive) force for r > re, the latter reaches
the maximum fm at a certain distance rm and then decreases with an increased interatomic distance and
becomes an order of magnitude smaller than its maximum at the distance 2re. The first derivative of the
Morse potential yields the central force

f(r) =
∂U(r)
∂r

= 2Dα[e−α(r−re) − e−2α(r−re)],

whence rm = re + ln (2/α) and fm = Dα/2.
The nonlinear problem of deformation of the atomic cell is solved by the finite-element method [16].

The triatomic cell is treated as a pivotal structure in which nodes 1 and 2 are fixed and node 3 has two
degrees of freedom. Under the action of external forces, the structure undergoes extension. The problem of
deformation of an atomic cell was solved numerically with the use of a step-by-step technique [17]. Because of
large displacements and rotations, the physically nonlinear problem of deformation of an atomic cell is also a
geometrically nonlinear problem. The solutions of similar problems contain eigenstates of the maximum-load
type. The main difficulty in solving these problems is that the external load which acts on the crystal lattice
cannot be used as a monotonically increasing deformation parameter. Moreover, the tangent stiffness matrix
degenerates when the load reaches its maximum. In this case, the Newton–Raphson iterative procedure does
not yield the convergence to the solution of the problem. To overcome these difficulties, Korobeinikov [17]
suggested to consider the external-load parameter as a desired quantity and specify the arc length in the
(U , λ) space (U is the displacement vector and λ is the external-load parameter) as an additional equation.
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Numerical calculations were performed for the following dimensionless constants of the interatomic-
interaction potential: re = 1, D = 1.7, and α = 2–10. The radius of the interatomic-interaction region vc was
determined from formula (4). Figure 5 shows the force versus the displacement for a triatomic cell in tension.
Table 1 lists the calculated values of vm and V ∗ for certain values of the parameter α in tension. We note
that the values of V ∗ do not depend on the parameter D. The force–displacement relations obtained support
the hypothesis proposed in Sec. 1: in formula (4), f(v) > 0 and f(v)→ 0 as v →∞.

Using the values of V ∗/re obtained and relations (9) and (13), one can calculate the dimensionless
lengths of the loaded segments of cracks ∆∗/re and the ratio of the critical loads σ∗0∞/σ

0
∞. The numerical

calculations show that in some cases, one can obtain simple estimates. To this end, we write formula (9) in
the form √

∆∗

re
'
√

2
æ + 1

V ∗

re

√
re
l∗0nk

G

σ∗0∞
. (14)

The approximate equality (14) includes the quantities σ∗0∞ and l∗0nk. To obtain estimates, we use the following
relations: 1) if the length determined by means of the necessary and sufficient criteria coincide, the critical
loads are subject to the condition σ∗0∞(l0nk) > σ0

∞(l0nk) with σ∗0∞ → σ0
∞ as ∆→ 0; 2) if the loads are such that

σ0
∞ < σ∞ < σ∗0∞ , we have 2l0nk < 2lnk < 2l∗0nk, since l∗0nk = l0nk + ∆∗. Replacing the quantities σ∗0∞ and l∗0nk in

(14) by the quantities σ0
∞ and l0nk, respectively, we obtain the approximate inequality√

∆∗

re
.

√
2

æ + 1
V ∗

re

√
re
l0nk

G

σ0
∞
. (15)

Using the necessary criterion, Kornev and Kurguzov [2, 3] obtained the relation for the critical stress σ0
∞

(rupture curves) for a sharp internal crack

σ0
∞
σm

=

(
n

k
+
√
n

k

√
2l0nk
re

)−1

.

This relation is simplified for reasonably long cracks if 2l0nk/re � 1:

σ0
∞
σm
' k√

n

√
re

2l0nk
. (16)

According to [12], estimates of the theoretical strength have the form

σm = η1E, (17)

where 0.1 < η1 < 0.3. Substituting (16) and (17) into (15), we finally obtain√
∆∗

re
.

1
æ + 1

V ∗

re

√
n

k(1 + ν)η1
. (18)

For the same lengths of long cracks, the estimates of critical loads obtained by means of the necessary
and sufficient criteria for brittle materials have the form

σ∗0∞
σ0
∞
. 1 +

4n
πk2(1 + ν)η1

1
æ + 1

V ∗

re
. (19)

Table 2 lists calculation results obtained with the use of (18) and (19) for plane strain (massive bodies)
and plane stress (thin films deposited on a flexible substrate).

For real values of α (3 6 α 6 6), the ratio ∆∗/re = 1.1–0.23. For these lengths of the loaded segments,
it makes no sense to consider the damage of the material with the use of sufficient criteria. Tables 1 and 2
give the dependence of critical loads obtained by means of the sufficient criterion on the energy characteristics
of the postcritical deformation of triatomic cells.

3. The Generalized Burgers Vector. In contrast to the formulation of necessary criteria in [2,
3], the main additional element in the formulation of the sufficient criterion (5) is the critical opening of a
normal-rupture crack V ∗. Following Cottrell [18], we give two equivalent definitions of the Burgers vector.
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TABLE 2

Plane strain
α

Plane stress

∆∗/re σ∗0∞/σ
0
∞ ∆∗/re σ∗0∞/σ

0
∞

2 2.369 3.769 1.955 3.519

3 1.092 2.880 0.901 2.710

4 0.630 2.428 0.520 2.299

6 0.288 1.966 0.238 1.879

8 0.165 1.732 0.137 1.666

10 0.107 1.588 0.088 1.535

Definition 1 (with the use of the elastic field). Let there be a macrocrack under specified loading. We
choose a sufficiently large closed contour in a continuous material that intersects the macrocrack at the point
(−∆; 0). The Burgers contour is traced counter-clockwise. Let ds be the element of the Burgers vector and
v be the displacement along the y axis. Then, the opening of the loaded normal-rupture crack V is expressed
in terms of the contour integral

V =
∮
∂v

∂s
ds. (20)

Relation (20) determines the components of the generalized Burgers vector b = (0, V ).
Definition 2 (of the Burgers–Frank type). Let there be a macrocrack under specified loading. We

consider a closed contour in the ideal crystal lattice (there is no macrocrack). Let this contour pass through the
point (−∆; 0). Then, the corresponding contour that encloses the macrocrack tip is open and the generalized
Burgers vector is the vector b of an ideal lattice which corresponds to the discontinuity of the contour in the
defect crystal after a macrocrack is introduced.

The definitions proposed, which differ from those accepted in the physics of solids, can be used to
formulate a sufficient strength criterion for the generalized stress state [3]. In this case, the generalized
Burgers vector has two components: b = (U, V ).
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